1.1.1 Mach-Zehnder Interferometry in the Quantum Hall Regime

One of the major achievements of mesoscopic physics has been the implementation of interference experiments previously limited to optics. Beyond a mere transposition of optics concepts, these experiments allow to probe the mechanisms limiting the phase coherence of electrons, which, due to their charge, is limited by their strong interaction with their electromagnetic environment. We explore this question implementing interferometers in the Integer Quantum Hall regime, where current is carried by one dimensional electron beams.

  • Quantum Coherence Engineering in the Integer Quantum Hall Regime, P-A. Huynh, F. Portier, H. le Sueur, G. Faini, U. Gennser, D. Mailly, F. Pierre, W. Wegscheider, and P. Roche,  Phys. Rev. Lett. 108, 256802 (2012), (arxiv)
  • Tuning Decoherence with a Voltage Probe, P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini, U. Gennser, and D. Mailly,  Phys. Rev. Lett. 102, 236802 (2009), (arxiv)
  • Noise Dephasing in Edge States of the Integer Quantum Hall Regime, P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini, U. Gennser, and D. Mailly,  Phys. Rev. Lett. 101, 186803 (2008), (arxiv)
  • Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime, Preden Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini, U. Gennser, and D. Mailly,  Phys. Rev. Lett. 100, 126802 (2008), (arxiv)
Image Unavailable
SEM view of an MZI interferometer including additional gates DG1 and DG2, allowing decoupling the blue interfering edge state from the red one, thus increasing phase coherence.